Method of Test for COMPRESSION-DEFLECTION OF PREFORMED COMPRESSION JOINT SEALS DOTD Designation: TR 612M-97 #### I. Scope This method of test describes the procedure for determining the sidewall pressure exerted by preformed elastomeric compression joint seals. ### II. Apparatus - A. Testing machine with the following capabilities: - Deflection speed adjustable to 12.5 mm per minute. - Accuracy: within ±1% of indicated load. - 3. Recording Chart with ability to plot load-deflection curves. - 4. Spacer plates if needed. - B. Calipers accurate to 0.02 mm. - C. Worksheet Elastomeric Compression Joint Seal (Figure 1). # III. Sample someon to meeting a se A sample of preformed compression joint seal in as-received condition shall be trimmed to 100 ± 5 mm so that the sheared ends are perpendicular to the long axis of the specimen. #### IV. Health Precautions Exercise caution when testing joint seals due to hazards of compression equipment. #### V. Procedure - A. The test temperature shall be 23 ± 2 °C. - B. Determination of Sidewall Pressure at 50% of Nominal Width - Measure the length, width, and depth of the specimen to the nearest 0.2 mm and record on the worksheet. - 2. Use the recording chart to record the load-deflection curves. - 3. Set the load application rate at 12.5 mm per minute. - 4. Place the specimen on its side atop the base plate and apply the load at a transverse rate of 12.5 mm per minute until the specimen has reached 50% deformation from its nominal width. - 5. Reverse the machine at the same rate. - Each specimen shall be subjected to three such compression cycles; the first two cycles provide conditioning and the third cycle constitutes the qualifying pressure cycle. - C. Determination of Sidewall Pressure at 80% of Nominal Width - Measure the length, width, and depth of the specimen to the nearest 0.2 mm and record on the worksheet. - 2. Use the recording chart to record the load-deflection curves. - 3. Set the load application rate at 12.5 mm per minute. - 4. Place the specimen on its side atop the base plate and apply the load at a transverse rate of 12.5 mm per minute until the specimen has reached 80% deformation from its nominal width. - 5. Reverse the machine at the same rate. - Each specimen shall be subjected to three such compression cycles; the first two cycles provide conditioning and the third cycle constitutes the qualifying pressure cycle. #### VI. Calculations D. Calculate the sidewall pressure at 50% nominal width to the nearest 1 kPa using the following formula: Sidewall pressure @ 50% nominal width = $$\frac{(\mathsf{F}_{50})}{\mathsf{I} \times \mathsf{w}} \times 1000$$ where: - F₅₀ = force as recorded on the chart to the nearest 0.5 N when seal is compressed to 50% of nominal width. - l = length of the sidewall of the seal to the nearest 0.1 mm - w = depth of the sidewall of the seal to the nearest 0.1 mm (that part of the seal in contact with the base plate). #### example: $$F_{50} = 749.5 \text{ N}$$ $I = 102.4 \text{ mm}$ $W = 66.0 \text{ mm}$ $$= 66.0 \text{ mm}$$ $$\frac{749.5}{102.4 \times 68.0} \times 1000$$ $$= \frac{749.5}{6758.4} \times 1000$$ $$= 0.110 \times 1000$$ ## Sidewall pressure @ 50% nominal width = 110 E. Calculate the sidewall pressure at 80% nominal width to the nearest 1 kPa using the following formula: Sidewall pressure @ 80% nominal width = $$\frac{(F_{80})}{1 \times w} \times 1000$$ where: F₈₀ = Force as recorded on the chart to the nearest 0.5 N when seal is compressed to 80% of nominal width. I = Length of the sidewall of the seal to the nearest 0.1 mm w = Depth of the sidewall of the seal to the nearest 0.1 mm (that part of the seal in contact with the base plate). example: $$\frac{305.0}{102.4 \times 66.0} \times 1000$$ $$= \frac{305.0}{6758.4} \times 1000$$ $$= 0.0451 \times 1000$$ $$= 45.1$$ Sidewall pressure @ 80% nominal width = 45 VII. Report Report the sidewall pressure on the seal to the nearest kPa and the corresponding width, expressed as a percent of nominal width, shall be noted. Report the manufacturer's name, the seal's identifying shape or model name, and the seal's nominal width. ## VIII. Normal Test Reporting Time The normal test reporting time is 2 hours. | REMARKS 2 | | 111 | 1 | | AYS @ -10°C | PTS, CHG., 7 D. | | |-------------------------------|---|--|------------------------|--|----------------|--|--------------| | I Heek | 000000000000000000000000000000000000000 | KXXXXXXX | | | Had out W 5 | ZU ON ENMAT | | | | | | | | | TEST RESULTS lax. of 15 charact | P/F
ters) | | SERIES OR M | ODEL NUMB | ER | | | 🖵 | | xxx | | IOMINAL W | IDTH, mm | | | | | 13 | [XXX] | | YPE | | | | | | (2) (| xxx | | | | | | | 1 1 | Indicate a sec | xxx | | | | | | | | ······································ | xx l lxx | | RIGINAL PR
TENSII | | I, MPa (A | STM D412 |) (MEDIAN OF | | | | | | | | | | VALUES) | o% cleatedrid | a (yrlayd) | | Specimen No. | Thickness mm | Width
mm | Load
N | Tensile Strength
MPa | Elongation % | . @ -10°C. % | ; | | 1 | | | | | | | 22 HRS | | 2 | | | nenn | FFT ARESE. | 396 | | | | 3 | | ej. (3). | | en e | 2 | | | | 4 | | · · | | | | | | | 5 | | | | | | | | | HARDI
AGED PROPE
TENSIL | ERTIES: (70 H
LE STRENGTH | RS. @ 10
RS. % LOS | 2240)
00°C) (A
S | STM D573) | kxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx xxxi | | Specimen
No. | Thickness
mm | Width
mm | Load
N | Tensile Strength
MPa | Elongation % | | | | 6 | | | | | 001 x [tribib] | | | | 7 | | | | | | | | | 8 | | The same of sa | | [Dung | - c a/n | | | | 9 | 1 :018U | and the same of th | N. I. I. | -yd venound -() | | | | | | | | | | | | | Figure 1 Elastomeric Compression Joint Seal - (Front) | HARDNESS, PTS. CHG
HARDNESS, PTS. CHG
PTS Change = (Aged
Hardness @ 100°C _ | ., 7 D | AYS @ - | 10°C | | | I OWE | | | REMANDS 2 | |---|--|---------------------------|--|---------|----|---------------------------------------|--------------|---|--| | OZONE RESISTANCE (| | | | | | • • • • | (XXXXXX) | (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | (XXXX) | | WEIGHT CHANGE IN C | IIL, % | (ASTM D4 | 71) | 3 | | ' | 93 | -
SMUM ISO | SERIES OR MO | | Final Weight, g (A) | | | _ | 3 | | | | | | | Original Weight, g (B) | | | | | | | | | | | Change in Weight, g (A-B) = | (C) | | | | | | | | | | Change in Weight, % - C/B | | | | | | | | | | | Avg. Change in Weight, % | | xxxxxx | 1 | | | | | | | | 72 HRS. @ -10°
22 HRS. @ -28.9 | | | | | | .u. L | 3/7/3 | mm | | | 22 HRS. @ -28.9
70 HRS. @ 100 | 9°C, %
°C, % | 6
 | | | | L | 1 1 | mm | 2 | | 22 HRS. @ -28.9
70 HRS. @ 1009
TEMPERATURE | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | | mm | 2 | | 22 HRS. @ -28.9
70 HRS. @ 100 | 9°C, %
°C, % | 6
 | | | | L | | man | 2 3 | | 22 HRS. @ -28.9
70 HRS. @ 1000
TEMPERATURE
Specimen No. | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | | man | 2
2
3
4 | | 22 HRS. @ -28.9 70 HRS. @ 1000 TEMPERATURE Specimen No. Original Width mm (A) | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | Bruckett) | man | 2
3
4
Encette Stren | | 22 HRS. @ -28.9
70 HRS. @ 1009
TEMPERATURE | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | | mm | 2 | | 22 HRS. @ -28.9 70 HRS. @ 1000 TEMPERATURE Specimen No. Original Width mm (A) | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | | mm | 3 3 4 | | 22 HRS. @ -28.9 70 HRS. @ 1000 TEMPERATURE Specimen No. Original Width mm (A) Recovered Width mm (B) | 9°C, %
°C, %
-1(| % | -2 | 8.9°C | 10 | 0°C | - Incane | mm | 2
3
4
Teresia Strend | | 22 HRS. @ -28.9 70 HRS. @ 1000 TEMPERATURE Specimen No. Original Width mm (A) Recovered Width mm (B) Recovery % = (B + A) Avg. Recovery % | 9°C, %
°C, %
-10 | 6 | -2 | 8.9°C | 10 | 0°C | Theans (ASTM | mm igh = Load + SS, TYPE A les: (70 H | 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 22 HRS. @ -28.5 70 HRS. @ 1000 TEMPERATURE Specimen No. Original Width mm (A) Recovered Width mm (B) Recovery % = (B + A) | 9°C, % °C, % -1(1 CTION: NOMIN NOMIN Width | (DOTD TE LOS LOS X Width) | -2
1
TH, kPa
TH, kPa
dd at 50% N | 8.9°C 2 | 10 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 11/1/ | Date: | AARDNES
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXXX
EXX | Figure 1 Elastomeric Compression Joint Seal - (Back)